Составьте многочлен p(x) = p1(x) + p2(x) – 4p3(x) и запишите его в стандартном виде, если: p1(x) = - 2x^2 + 3x; p2(x) = 4x^2 – 3; p3(x) = 2x – 4.
p(x) = p1(x) + p2(x) – 4p3(x)
p1(x) = - 2x^2 + 3x; p2(x) = 4x^2 – 3; p3(x) = 2x – 4.
р(х) = (- 2x^2 + 3x) + (4x^2 – 3) - 4(2x – 4)
р(х) = - 2x^2 + 3x + 4x^2 – 3 - 8х +16
р(х) = 2х^2 - 5х - 13
2х^2 - 5х - 13 = 0
p(x) = p1(x) + p2(x) – 4p3(x) , если p1(x) = - 2x^2 + 3x; p2(x) = 4x^2 – 3; p3(x)=2x–4,то
p1(x) = 3x + -2x^2
p2 (x) = 4x^2-3
p3 (x) = 2x-4
p(x) = (4x^2-3) + (- 2x^2 + 3x) - 4(2x – 4)
p(x) = 2х^2 - 5х - 13
Ответ: 2x^2-5x -13 =0