0 интересует 0 не интересует
50 видели

точка М находится на расстоянии 12 и 5 см от двух перпендикулярных плоскостей.найти расстояние от этой точки до линии пересечения плоскостей. помогите, надо оценку исправить до завтраа

от (39 баллов) в разделе Геометрия

1 Решение или Ответ

0 интересует 0 не интересует
от Супер Академик (78.5k баллов)
 
Правильный ответ

Α⊥β, α∩β = а.
Проведем МА⊥α и МВ⊥β.
Тогда МА = 12 см - расстояние от точки М до плоскости α,
МВ = 5 см - расстояние от точки М до плоскости β.
Затем проведем АС⊥а и ВС⊥а.
Если прямая, лежащая в одной плоскости,  перпендикулярна линии пересечения перпендикулярных плоскостей, то он перпендикулярна другой плоскости. Значит
АС⊥β и ВС⊥α.
АС║МВ и ВС║МА как перпендикуляры к одной плоскости, значит
МАСВ прямоугольник.
Прямая а перпендикулярна плоскости МАВ (а⊥АС и а⊥ВС), значит
а⊥МС.
МС - искомое расстояние от точки М до прямой а.
Из прямоугольного треугольника МАС по теореме Пифагора:
МС = √(МА² + АС²) = √(144 + 25) = √169 = 13 см

...